Bifurcations of Invariant Tori in Predator-Prey Models with Seasonal Prey Harvesting

نویسندگان

  • Jing Chen
  • Jicai Huang
  • Shigui Ruan
  • Jihua Wang
چکیده

In this paper we study bifurcations in predator-prey systems with seasonal prey harvesting. First, when the seasonal harvesting reduces to constant yield, it is shown that various kinds of bifurcations, including saddle-node bifurcation, degenerate Hopf bifurcation, and Bogdanov– Takens bifurcation (i.e., cusp bifurcation of codimension 2), occur in the model as parameters vary. The existence of two limit cycles and a homoclinic loop is established. Bifurcation diagrams and phase portraits of the model are also given by numerical simulations, which reveal far richer dynamics compared to the case without harvesting. Second, when harvesting is seasonal (described by a periodic function), sufficient conditions for the existence of an asymptotically stable periodic solution and bifurcation of a stable periodic orbit into a stable invariant torus of the model are given. Numerical simulations, including bifurcation diagrams, phase portraits, and attractors of Poincaré maps, are carried out to demonstrate the existence of bifurcation of a stable periodic orbit into an invariant torus and bifurcation of a stable homoclinic loop into an invariant homoclinic torus, respectively, as the amplitude of seasonal harvesting increases. Our study indicates that to have persistence of the interacting species with seasonal harvesting in the form of asymptotically stable periodic solutions or stable quasi-periodic solutions, initial species densities should be located in the attraction basin of the hyperbolic stable equilibrium, stable limit cycle, or stable homoclinic loop, respectively, for the model with no harvesting or with constant-yield harvesting. Our study also demonstrates that the dynamical behaviors of the model are very sensitive to the constant-yield or seasonal prey harvesting, and careful management of resources and harvesting policies is required in the applied conservation and renewable resource contexts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discretization of a fractional order ratio-dependent functional response predator-prey model, bifurcation and chaos

This paper deals with a ratio-dependent functional response predator-prey model with a fractional order derivative. The ratio-dependent models are very interesting, since they expose neither the paradox of enrichment nor the biological control paradox. We study the local stability of equilibria of the original system and its discretized counterpart. We show that the discretized system, which is...

متن کامل

LIMITED GROWTH PREY MODEL AND PREDATOR MODEL USING HARVESTING

In this paper, we have proposed a study on controllability and optimal harvestingof a prey predator model and mathematical non linear formation of the equation equilibriumpoint of Routh harvest stability analysis. The problem of determining the optimal harvestpolicy is solved by invoking Pontryagin0s maximum principle dynamic optimization of theharvest policy is studied by taking the combined h...

متن کامل

the predator-prey discrete system codimention- 2 bifurcations

A discrete predator-prey system is presented. We study the existence and stability of the fixed point system. The conditions of existence of Flip and Neimark-sacker bifurcation is the system are derived. By using numerical continuation methods and MatContM toolbox. We compute bifurcation curves of fixed points and cycles with periods up to 32 under variation of one and to parameters, and comput...

متن کامل

Threshold harvesting policy and delayed ratio-dependent functional response predator-prey model

This paper deals with a delayed ratio-dependent functional response predator-prey model with a threshold harvesting policy. We study the equilibria of the system before and after the threshold. We show that the threshold harvesting can improve the undesirable behavior such as nonexistence of interior equilibria. The global analysis of the model as well as boundedness and permanence properties a...

متن کامل

On Nonlinear Dynamics of Predator-Prey Models with Discrete Delay∗

In this survey, we briefly review some of our recent studies on predator-prey models with discrete delay. We first study the distribution of zeros of a second degree transcendental polynomial. Then we apply the general results on the distribution of zeros of the second degree transcendental polynomial to various predator-prey models with discrete delay, including Kolmogorov-type predator-prey m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM Journal of Applied Mathematics

دوره 73  شماره 

صفحات  -

تاریخ انتشار 2013